220 research outputs found

    Combined immune checkpoint inhibitor therapy with nivolumab and ipilimumab causing acute-onset type 1 diabetes mellitus following a single administration: two case reports.

    Get PDF
    The use of immune checkpoint inhibitor (ICI) therapy is becoming a standard of care for several cancers. Monoclonal antibodies targeting cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed cell death protein 1 (PD-1) or its ligand (PD-L1) cause a broad spectrum of autoimmune adverse events. ICI-induced type 1 diabetes mellitus (T1DM) is extremely rare (< 1%) but potentially life-threatening. It appears to be more common with PD-1 blockade (or combination immunotherapy) than with anti-CTLA-4 therapy, often during the first three to six months of therapy. We report an acute onset T1DM with severe inaugural diabetic ketoacidosis (DKA) and remarkably elevated Glutamic Acid Decarboxylase antibody (GADA) titres following a single administration of combined ICI therapy with nivolumab (anti-PD-1) and ipilimumab (anti-CTLA-4) in two adult patients with advanced metastatic melanoma. In these cases, the time to diabetes onset was remarkably short (two and five weeks), and one presented with fulminous T1DM in a previous long-standing type 2 diabetes mellitus. Oncological patients treated with combination therapy of anti-PD-1 and anti-CTLA-4 can develop a particular pattern of T1DM, with very rapid onset within a few weeks after starting ICI therapy, even in the presence of an existing type 2 diabetes. ICI-induced T1DM is a medical emergency in presence of severe inaugural DKA and requires a collaboration between specialists and primary care physicians, as well as patient education, for early diagnosis and supportive care

    Spatial and temporal genetic dynamics of the grasshopper <i>Oedaleus decorus</i> revealed by museum genomics.

    Get PDF
    Analyzing genetic variation through time and space is important to identify key evolutionary and ecological processes in populations. However, using contemporary genetic data to infer the dynamics of genetic diversity may be at risk of a bias, as inferences are performed from a set of extant populations, setting aside unavailable, rare, or now extinct lineages. Here, we took advantage of new developments in next-generation sequencing to analyze the spatial and temporal genetic dynamics of the grasshopper &lt;i&gt;Oedaleus decorus&lt;/i&gt; , a steppic Southwestern-Palearctic species. We applied a recently developed hybridization capture (hyRAD) protocol that allows retrieving orthologous sequences even from degraded DNA characteristic of museum specimens. We identified single nucleotide polymorphisms in 68 historical and 51 modern samples in order to (i) unravel the spatial genetic structure across part of the species distribution and (ii) assess the loss of genetic diversity over the past century in Swiss populations. Our results revealed (i) the presence of three potential glacial refugia spread across the European continent and converging spatially in the Alpine area. In addition, and despite a limited population sample size, our results indicate (ii) a loss of allelic richness in contemporary Swiss populations compared to historical populations, whereas levels of expected heterozygosities were not significantly different. This observation is compatible with an increase in the bottleneck magnitude experienced by central European populations of &lt;i&gt;O. decorus&lt;/i&gt; following human-mediated land-use change impacting steppic habitats. Our results confirm that application of hyRAD to museum samples produces valuable information to study genetic processes across time and space

    Steroid profiling by UHPLC-MS/MS in dried blood spots collected from healthy women with and without testosterone gel administration.

    Get PDF
    The quantification of a large panel of endogenous steroids in serum by LC-MS/MS represents a powerful clinical tool for the screening or diagnosis of diverse endocrine disorders. This approach has also demonstrated excellent sensitivity for the detection of testosterone misuse in the anti-doping field, especially in female athlete population. In both situations, the use of dried blood spots (DBS) could provide a viable alternative to invasive venous blood collection. Here, the evaluation of DBS sampling for the quantification of a panel of endogenous steroids using UHPLC-MS/MS is described. The UHPLC-MS/MS method was validated for quantitative analysis of eleven free and eight conjugated steroids and was then used for the analysis of DBS samples collected in 14 healthy women during a normal menstrual cycle (control phase) followed by a 28-days testosterone gel treatment (treatment phase). Results were compared with those obtained from serum matrix. Satisfactory performance was obtained for all compounds in terms of selectivity, linearity, accuracy, precision, combined uncertainty, stability as well as extraction recovery and matrix effects. In control phase, high correlation was observed between DBS and serum concentrations for most compounds. In treatment phase, higher testosterone concentrations were observed in capillary than in venous DBS, suggesting a possible interference resulting from testosterone contamination on finger(s) used for gel application. Steroid profiling in capillary DBS represents a simple and efficient strategy for monitoring endogenous steroid concentrations and their fluctuation in clinical context of steroid-related disorders, or for the detection of testosterone abuse in anti-doping

    Hybridization Capture Using RAD Probes (hyRAD), a New Tool for Performing Genomic Analyses on Collection Specimens.

    Get PDF
    In the recent years, many protocols aimed at reproducibly sequencing reduced-genome subsets in non-model organisms have been published. Among them, RAD-sequencing is one of the most widely used. It relies on digesting DNA with specific restriction enzymes and performing size selection on the resulting fragments. Despite its acknowledged utility, this method is of limited use with degraded DNA samples, such as those isolated from museum specimens, as these samples are less likely to harbor fragments long enough to comprise two restriction sites making possible ligation of the adapter sequences (in the case of double-digest RAD) or performing size selection of the resulting fragments (in the case of single-digest RAD). Here, we address these limitations by presenting a novel method called hybridization RAD (hyRAD). In this approach, biotinylated RAD fragments, covering a random fraction of the genome, are used as baits for capturing homologous fragments from genomic shotgun sequencing libraries. This simple and cost-effective approach allows sequencing of orthologous loci even from highly degraded DNA samples, opening new avenues of research in the field of museum genomics. Not relying on the restriction site presence, it improves among-sample loci coverage. In a trial study, hyRAD allowed us to obtain a large set of orthologous loci from fresh and museum samples from a non-model butterfly species, with a high proportion of single nucleotide polymorphisms present in all eight analyzed specimens, including 58-year-old museum samples. The utility of the method was further validated using 49 museum and fresh samples of a Palearctic grasshopper species for which the spatial genetic structure was previously assessed using mtDNA amplicons. The application of the method is eventually discussed in a wider context. As it does not rely on the restriction site presence, it is therefore not sensitive to among-sample loci polymorphisms in the restriction sites that usually causes loci dropout. This should enable the application of hyRAD to analyses at broader evolutionary scales

    Insulin-like peptide 3 (INSL3) in congenital hypogonadotrophic hypogonadism (CHH) in boys with delayed puberty and adult men

    Get PDF
    Background: Delayed puberty in males is almost invariably associated with constitutional delay of growth and puberty (CDGP) or congenital hypogonadotrophic hypogonadism (CHH). Establishing the cause at presentation is challenging, with “red flag” features of CHH commonly overlooked. Thus, several markers have been evaluated in both the basal state or after stimulation e.g. with gonadotrophin releasing hormone agonist (GnRHa). Insulin-like peptide 3 (INSL3) is a constitutive secretory product of Leydig cells and thus a possible candidate marker, but there have been limited data examining its role in distinguishing CDGP from CHH. In this manuscript, we assess INSL3 and inhibin B (INB) in two cohorts: 1. Adolescent boys with delayed puberty due to CDGP or CHH and 2. Adult men, both eugonadal and having CHH. Materials and methods: Retrospective cohort studies of 60 boys with CDGP or CHH, as well as 44 adult men who were either eugonadal or had CHH, in whom INSL3, INB, testosterone and gonadotrophins were measured. Cohort 1: Boys with delayed puberty aged 13-17 years (51 with CDGP and 9 with CHH) who had GnRHa stimulation (subcutaneous triptorelin 100mcg), previously reported with respect to INB. Cohort 2: Adult cohort of 44 men (22 eugonadal men and 22 men with CHH), previously reported with respect to gonadotrophin responses to kisspeptin-54. Results: Median INSL3 was higher in boys with CDGP than CHH (0.35 vs 0.15 ng/ml; p=0.0002). Similarly, in adult men, median INSL3 was higher in eugonadal men than CHH (1.08 vs 0.05 ng/ml; p<0.0001). However, INSL3 more accurately differentiated CHH in adult men than in boys with delayed puberty (auROC with 95% CI in adult men: 100%, 100-100%; boys with delayed puberty: 86.7%, 77.7-95.7%). Median INB was higher in boys with CDGP than CHH (182 vs 59 pg/ml; p<0.0001). Likewise, in adult men, median INB was higher in eugonadal men than CHH (170 vs 36.5 pg/ml; p<0.0001). INB performed better than INSL3 in differentiating CHH in boys with delayed puberty (auROC 98.5%, 95.9-100%), than in adult men (auROC 93.9%, 87.2-100%). Conclusion: INSL3 better identifies CHH in adult men, whereas INB better identifies CHH in boys with delayed puberty

    FGFR1 and PROKR2 rare variants found in patients with combined pituitary hormone deficiencies.

    Get PDF
    The genetic aetiology of congenital hypopituitarism (CH) is not entirely elucidated. FGFR1 and PROKR2 loss-of-function mutations are classically involved in hypogonadotrophic hypogonadism (HH), however, due to the clinical and genetic overlap of HH and CH; these genes may also be involved in the pathogenesis of CH. Using a candidate gene approach, we screened 156 Brazilian patients with combined pituitary hormone deficiencies (CPHD) for loss-of-function mutations in FGFR1 and PROKR2. We identified three FGFR1 variants (p.Arg448Trp, p.Ser107Leu and p.Pro772Ser) in four unrelated patients (two males) and two PROKR2 variants (p.Arg85Cys and p.Arg248Glu) in two unrelated female patients. Five of the six patients harbouring the variants had a first-degree relative that was an unaffected carrier of it. Results of functional studies indicated that the new FGFR1 variant p.Arg448Trp is a loss-of-function variant, while p.Ser107Leu and p.Pro772Ser present signalling activity similar to the wild-type form. Regarding PROKR2 variants, results from previous functional studies indicated that p.Arg85Cys moderately compromises receptor signalling through both MAPK and Ca(2) (+) pathways while p.Arg248Glu decreases calcium mobilization but has normal MAPK activity. The presence of loss-of-function variants of FGFR1 and PROKR2 in our patients with CPHD is indicative of an adjuvant and/or modifier effect of these rare variants on the phenotype. The presence of the same variants in unaffected relatives implies that they cannot solely cause the phenotype. Other associated genetic and/or environmental modifiers may play a role in the aetiology of this condition

    A novel CHD7 mutation in an adolescent presenting with growth and pubertal delay.

    Get PDF
    Mutations in the CHD7 gene, encoding for the chromodomain helicase DNA-binding protein 7, are found in approximately 60% of individuals with CHARGE syndrome (coloboma, heart defects, choanal atresia, retarded growth and development, genital hypoplasia, ear abnormalities and/or hearing loss). Herein, we present a clinical case of a 14-year-old male presenting for evaluation of poor growth and pubertal delay highlighting the diagnostic challenges of CHARGE syndrome. The patient was born full term and underwent surgery at 5 days of life for bilateral choanal atresia. Developmental milestones were normally achieved. At age 14 his height and weight were -2.04 and -1.74 standard deviation score respectively. He had anosmia as well as prepubertal testes and micropenis (4 cm×1 cm). The biological profile showed low basal serum testosterone and gonadotropins (testosterone, 0.2 nmol/L; luteinizing hormone, 0.5 U/L; follicle-stimulating hormone, 1.3 U/L), and otherwise normal pituitary function and normal imaging of the hypothalamic-pituitary area. The constellation of choanal atresia, anosmia, mild dysmorphic features, micropenis and delayed puberty were suggestive of CHARGE syndrome. Targeted genetic testing of CHD7 was performed revealing a de novo heterozygous CHD7 mutation (c.4234T&amp;gt;G [p.Tyr1412Asp]). Further paraclinical investigations confirmed CHARGE syndrome. Despite the presence of suggestive features, CHARGE syndrome remained undiagnosed in this patient until adolescence. Genetic testing helps clarify the phenotypic and genotypic spectrum to facilitate diagnosis, thus promoting optimal follow-up, treatment, and appropriate genetic counselling

    An ancient founder mutation in PROKR2 impairs human reproduction

    Get PDF
    Congenital gonadotropin-releasing hormone (GnRH) deficiency manifests as absent or incomplete sexual maturation and infertility. Although the disease exhibits marked locus and allelic heterogeneity, with the causal mutations being both rare and private, one causal mutation in the prokineticin receptor, PROKR2 L173R, appears unusually prevalent among GnRH-deficient patients of diverse geographic and ethnic origins. To track the genetic ancestry of PROKR2 L173R, haplotype mapping was performed in 22 unrelated patients with GnRH deficiency carrying L173R and their 30 first-degree relatives. The mutation's age was estimated using a haplotype-decay model. Thirteen subjects were informative and in all of them the mutation was present on the same ∼123 kb haplotype whose population frequency is ≤10%. Thus, PROKR2 L173R represents a founder mutation whose age is estimated at approximately 9000 years. Inheritance of PROKR2 L173R-associated GnRH deficiency was complex with highly variable penetrance among carriers, influenced by additional mutations in the other PROKR2 allele (recessive inheritance) or another gene (digenicity). The paradoxical identification of an ancient founder mutation that impairs reproduction has intriguing implications for the inheritance mechanisms of PROKR2 L173R-associated GnRH deficiency and for the relevant processes of evolutionary selection, including potential selective advantages of mutation carriers in genes affecting reproductio

    Effect of 12 months of testosterone replacement therapy on metabolic syndrome components in hypogonadal men: data from the Testim Registry in the US (TRiUS)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent evidence suggests that there may be a bidirectional, physiological link between hypogonadism and metabolic syndrome (MetS), and testosterone replacement therapy (TRT) has been shown to improve some symptoms of MetS in small patient populations. We examined the effect of 12 months of TRT on MetS components in a large cohort of hypogonadal men.</p> <p>Methods</p> <p>Data were obtained from TRiUS (Testim<sup>® </sup>Registry in the United States), a 12-month, multicenter, prospective observational registry (N = 849) of hypogonadal men prescribed Testim 1% testosterone gel (5-10 g/day). Data analyzed included age, total testosterone (TT), free testosterone (FT), sex hormone-binding globulin (SHBG), and MetS components: waist circumference, blood pressure, fasting blood glucose, plasma triglycerides, and HDL cholesterol.</p> <p>Results</p> <p>Of evaluable patients (581/849) at baseline, 37% were MetS+ (n = 213) and 63% were MetS- (n = 368). MetS+ patients had significantly lower TT (p < 0.0001) and SHBG (p = 0.01) levels. Patients with the lowest quartile TT levels (<206 ng/dL [<7.1 nmol/L]) had a significantly increased risk of MetS+ classification vs those with highest quartile TT levels (≥331 ng/dL [≥11.5 nmol/L]) (odds ratio 2.66; 95% CI, 1.60 to 4.43). After 12 months of TRT, TT levels significantly increased in all patients (p < 0.005). Despite having similar TT levels after TRT, only MetS+ patients demonstrated significant decreases in waist circumference, fasting blood glucose levels, and blood pressure; lowest TT quartile patients demonstrated significant decreases in waist circumference and fasting blood glucose. Neither HDL cholesterol nor triglyceride levels changed significantly in either patient population.</p> <p>Conclusion</p> <p>Hypogonadal MetS+ patients were more likely than their MetS- counterparts to have lower baseline TT levels and present with more comorbid conditions. MetS+ patients and those in the lowest TT quartile showed improvement in some metabolic syndrome components after 12 months of TRT. While it is currently unclear if further cardiometabolic benefit can be seen with longer TRT use in this population, testing for low testosterone may be warranted in MetS+ men with hypogonadal symptoms.</p
    corecore